Jam.py

User Guide.

Table of contents

1 OVRIVIOW...citiiiitieiteetee ettt ettt ettt e s ab e s ab e s bb e s b e e s ba e e e baeeenbaesensaesenbeeennne 3
2 GEOLHNE STATTEA. .. eeeereeeeieeeeieeeeiee et e et e e et e e e etteesbeeesbeessabeeessseeesseeeseeaesssaeasseeessssssaaesessnsssseesennsnes 4
2.1 INSAIIALION. ..c.ueiteieeieetei ettt ettt et b ettt et b e bt e n b e e nane e saneeeaee 4
2.2 CreatiNg @ NEW PIOJECT....ueeireiurreeerrireeereirteeeesireeeesssseeesssssseesesssseeesssssssessssssseeesssssssseessessssssssnnns 4
3 Building first jam.py apPliCation.........cccueerieriiiinieiiierieeiteete ettt teeie s te et esbessaeesataessssnaesnns 6
3.1 DEIMIO PIOJECT.c.uuvvieiieiiieeteeiitteeesitteeeeeiteeeesitteeessraeeeessaaeesesaseaeeessssaeesssssseessssssaaessssnsseesssssseeesnns 6
3.2 AQMUNISITALOL. .c.ueetieteeiierteete ettt ettt et sat st e s bt e bt et e sae e bt et e s st e b e easesaeesnesbeeesbeennneennseenane 6
3.3 Building first Catalog........ecvieeuieeiieiiecieecteee ettt ettt ere e te e e ste e raeebe e e ba e e eenbae e e nraeeenns 7
3.4 Complete catalogs DUIliNg........c.coecueevuiiriiiiienieeieeeee et st e e sbee e 12
3.5 Creating journals and tables..........cc.eeeuiiieiiieiiiieeriiecre et ree s e s sare e s sareeesaaeesnaeeeeas 13
3.6 Creating fIlterS.....cociieiieieeieeeeeee ettt st s e e bt e st e s be e e e abe e e esataeeenaraeens 15
3.7 CreatiNg INAICES.c.veeeiieeeiieeeiieeeitee et e ettt esrtee e e steeesaeeesbeeessaeeesssaeessseeessseessssssaseessssssseaeeenns 17
3.8 BUILAING FEPOTTS. ..ccuvieeiieiieeitiiteeieerte ettt e et etteste st e ste e bt essbessaesssaesstasssesssssaesassseesasseeennns 18
3.9 PrOjJECE PATAIMIELETS. ... uvvieeeeiireeeeriiiteeeesireeeesstteeessitaeeessssseaeeessssaeesssssaeessssssaessssssaeesssssssesssssssees 20
3.10 USEIS AN TOLES.....ceuieeiriieiiiieeiteeteeteete sttt ettt et be st s st e b et e saeesbe et e sae e seenseesaeee 20
4 Jam.DY PIOZTAIMITIIISuuvvreeeeruireeeeasrreeeeniureeesssseeeeessssseessssssseesssssseessssssseesssssssessssssssesssssssaseeessssssns 22
4.1 EVENE EQITOT c.neiiiiiiiiieieeeete ettt sttt ettt sa et et sb et sat e bt b e s b e e s e e nee 22
A I T 1 TR RSSO 24
4.3 Data PrOGIAITIITIIIG. .. cceeeruureeeearurreererureeeeaarreeeaasureeesssssseeesssseeesssssseeesssssseesssssseessssnsssssseeeeeeeees 26
G T I = <] Ua USRS SRRRRRUPPPRR 26
4.3.2 FIILOTS. .ttt ettt ettt st ettt b et s e a et et e st e st e e bt e e nneeenaneeaee 29
4.3.3 Getting data TECOTAS.cccveerereeeiieeeireeeieeesteeesteeesteeesaeesssaeesseeesseesssseeesssssssseeessssnssees 30
4.3.4 Navigating through TeCOTAS.........cccueiriirriiieieriieeieet ettt te e e s b e s saeesenes 33
4.3.5 Changing the data..........ccccueeeiiiieiieecieeeee ettt ree e e see e e e e e e s rae e s baeesaaaaenns 34
4.3.6 Working With detailS..........ccccueirieriiiiieniieeeeceee ettt eae e s baee e 35
4.4 Client-side ProgramIMliNg........cccceeeveerieereireersiueeesueeesiseessseesssseesssseesssssessseesssssessssssessssssseeeses 35
A4.4.1 MaIN FOTTN.ccutiiiiiiieeieeeteeeert ettt ettt e et e et e s bt e saaessbeesaesssbaesesssaesassseesasseaennn 35
442 FOTTIIS. cciiiiitieeeeiiieeeeeiteeeeetteeessiteeessibteeeesssbaeesssasaaeessssssaeeesnsaaessnsssaaaaaeesesssssnnssnnsssssnnns 36
4.4.2.1 Client forms in python and pygtK.........ccceeviiriiiniiniiiieceeeeeeeece e 36
4.4.2.2 Client forms in Web interface..........cccceecuieriieiieciecciece et e e 38

4.4.3 Client MEthOdS.cooeriiriiieeieeieneeeete ettt ettt et ettt et ee et e sseesaneesaneeeas 39
4.4.3.1 View MEthO.......cooouiiiiieeieecteeee ettt e st e e re e s sbe e s sabe e ssabeesssaeessaeesnnnns 39
4.4.3.2 Append_record, insert_record, edit_record methods...........cccceeeviirriiienncieeiniiennns 41
4.4.3.3 Post_record 1 apply_record methods...........ccceeeeieeeiiieiniiieeniieerieeeeieeeeieee e e 41
4.4.3.4 Delete_1ecord MEthOd........ooovveeeiiieeeieeeeeeeeee e 41
4.4.3.5 Create_grid Method........c..coeiiiieiiiieiieeeieeeeieeeee et ssire e se e e saa e e aar e e e e s s aneaeeas 42
4.4.3.6 Create_entries INETHOM.uueueeneennennneseseenes 44
4.4.3.7 Interaction between data and visual CONtIOIS..........cccceevveieiieeriiieeeieriieee e, 44
4.4.3.8 Web client debugging..........cccceecueeriiriiiiniiniieriecie ettt ettt e s 45

4.5 Sever Side PrOGraIMITIIIIG......ccccvueierieerieereireersiieeeeteeeseeeessteesssseesssreessseeessssesssseeessseesesssssseeesens 46
4.5.1 SQL QUETIES.c.ccuneeieiieiiieeeeitee e ettt ettt e e ettt e e s s et eessaseeesseasbteesssnsaeesasssaeesssnnseessssnnnnnns 46
4.5.2 SEIVET EVEILS..cccuuuvieeieririeeeniiteeeesitteeeasisteeeesssseesssssseeesssssseesssssssessssssssessssssseessssssssnssssnsnns 47
4.5.3 SeIVer fUNCLOMS. ...c..tiiteeiieriteieeteeeteteet ettt ettt st s et et et e sbe e sabeesbeeesseeeneesnnee 50

4.6 REPOTT PIrOZTAMITIIIIS. ..cceuvveeeieurreerenirteeessireeesssrreessssseeesssssseeessssseessssssseesssssseessssssaesssssnsnsnnn 51

5 JAIMLDY LIS, c.ntteiitiieetee ettt ettt e bt e st e e bt e st e e be e s at e e be e st e e beesateebeennnneeeans
5.1 Exporting and importing project Metadata..........ccueerrveerieeeniiieeniieenieeesireeesnreeeeessseeseeessssnnns
5.2 Printing of programming COTE............coeiueeruiiriiriienieeiterie ettt steesteesbessseessaraeeenes

1 Overview.

Jam.py is an event-driven framework for developing client-server database applications. You can
use jam.py to create web based applications. Server side is implemented in Python and uses Web.py
library, the client side in JavaScript and uses JQuery and Bootstrap:

127.00.1:8080/# x

& - C |D127001
Invoices
= :
Invoices Customers Jansiz013
cu Total
Hamalainen search (| (IED
FirstName LastName Company Address Country Phone Email
Robero Aimeida Riotur PragaPio X, 119 Brazil +55(21)2271- roberoalmeida@rioturgov.r
, Julia Bamett 302S700E USA +1(801)531- jubameti@gmail.com
aty Chl Camile Bemard 4,Rue Miton France +3301497065 camille bemard@yahoo
“ " fotal
- Michelle Brooks 627 Broadway UsA +1(12)221- michelleb@aolcom
o | Higher $104
— o Robert Brown 796 Dundas StreetWest Canada +1(416)363- robbrown@shaw.ca
Helena H Secrets, $1.04
e | Kany Chase 801 W atn Street USA +1(775)223- kachase@hotmailcom
OGU Eryptio $104
Richard Cunningham 2211 W Beny Steet USA +1(817)924- ricunningham@hotmail.com
EniqueM preams| s1.04
anod g Mac Dubois 11, Place Bellecour France | +3304783030 marc.dubois@hotmailcom .
ahOR{ Enuptio 104
o Hanl Jozo Femandes RuadaAssuncao53 Portugal +351(213)466- ffemandes@yahoo pt
A On Fire, $1.04
Edward Francs 230 Eigin Street Canada +1(613)234- edrancis@yachoo.ca
st | Yearto $1.04
Varc Dun| Wat Grard 9.Place LouisBarthou France _ +330556 96 96 wyattgirard@yahoo
b Fall To $1.04
Luis Gongalves Embraer - Empresa Brasileira de Av. Brigadeiro Faya Lima, (RIS INEEI s @ embraer.com.br
ABenc:
John Gordon 60 Salem Street USA +1(617)522- johngordon22@yahoo.com
UmHo 0
Tim Goyer Apple nc. 1infiite Loop USA +1(408)9%- tgoyer@apple.com
Looking $104 fotal
Pavick Gray 1033 N Park Ave USA +1(20)622 patickgray@aol com
' sweet] $104
se Feinh $104 [sto04
« < Page 1 ofd » »
Enplon{ Samba s104 [s104
Dreams, 4 | s104
Eruption, § Dell Delete Edit New I $1.04
o 04
. 043
ok Cancel
Delel

as well as local desktop applications in python and pygtk and desktop client - server applications:
client in python and pygtk, server in python and web.py:

Journals Reports Catalogs

Customers

B
Terhil - - 1= 456
| FirstName LastName Company Address Country Phone Email I
Rober Roberto Almeida Riotur i’“ﬁ‘;""’ Brazil +55(21) 22717000 roberto.almeida@riotur.gov.br 6.24
\J";m: Julia Barnett 3025700F USA +1(801) 531-7272 jubarnett@gmail.com ;'ig
ohn 1
8 4, Rue .
Kathy | |camille Bernard Milton | France 4330149706565 camille. bernard@yahoo.fr l 2.08
DanM . & _ - .04
Hight |Michelle Brooks USA +1(212) 2213546 michelleb@aol.com
visled %_‘ Broadway 04 e
:” 4 796 :
i ecrg
Diego | \ichi |Robert Brown ?t”r';iis Canada +1(416) 3638888 robbrown@shaw.ca 4/ | p-36
Enrigt 6.24
Erupl west -
Hugh! | oauig | B 801W 4th e — pre
Terhil |preal Kathy Chase street USA +1(775) 223-7665 kachase@hotmail.com 508
Wyatt | Michi 2211 W 04 2.08
Marc| Rock! | gichard Cunningham Berry UsA +1(817) 924-7272 ricunningham@hotmail.com n.04
patri¢ | Erupl Street 04 352 .
and [! 11, Place . .
ond Marc Dubois Bellecour | TTaNCe +330478303030 marc.dubois@hotmail.com
Davig Ruada bt pest
Highe |vear! |Jodo Fernandes Assun¢ao Portugal +351(213) 466-111 jfernandes@yahoo.pt B .04
Secrel | audig 53 h.0a
enre, il i
98N | Fall | |eqward | Frandis 230Elgin | g, +1(613) 2343322 edFfrancis@yachoo.ca 04
Erupti |slash Street .
Micha | A gt o Blara > lnalls |
v
Drean
Edwai | D4 n.0s
1 1 Delete Customer list Edit New Select F
Erupti M-
Cancer OK g
Delete Reports v Filter Edit T New

Filter: Period range from: 08/07/2013

The don't repeat yourself (DRY) principle underlying the framework allows a developer to focus on
programming business logic and not waste time on the routine work of programming interface and
server details. That allows to create feature rich, complex and robust applications practically on the
fly.

2 Getting started

2.1 Installation.
1. Download the zip package.

2. Create a new directory and unpack the archive there.

3. Go into the directory and run the setup command from command line:

python setup.py install

note: on some unix like systems you may need to switch to root or run:

sudo python setup.py install

2.2 Creating a new project.

1. Create a new directory.

2. Go into the directory and run from command line:
jam-project.py

3. In the window that opens, select the language and press OK button.

Enal

Select language L;&:jéf -

Cancel || OK |

4. In the New project dialog box fill in:

* Caption is the project name that appears to users

* Name - name of project (task) that will be used in programming code to get access to the

task object . Should be a valid python identifier.

* DB type — select database type. If database is not Sqlite, it must be created in advance and

its attributes should be entered in the corresponding form fields.

When you press OK, the connection to the database will be checked, and in case of failure an error

message will be displayed.

7 New project

Caption |Demo
Name |demo

DB type | Sqlite

Database |demo.sqlitg

Login
Password
Host

Port

Encoding

Cancel

OK

If all goes well a new project will be created and a project tree will appear in Administrator.

P

¥ Project

Users

Roles

¥ Task
¥ Demo

» @ Administrator - Demo

Project parameters

Project locale

Export

Import

Catalogs
Journals
Tables
Reports

Prinkt

The following files and folders will be created in the project directory:

files:

server.py — run this file to start the server. You can specify a port as parameter, for
example ./server.py 8081. By default, the port is 8080

admin.py — run this file to start the project Administrator. You can specify an URL and a
port as parameters, for example ./admin.py http://127.0.0.1:8080. In this case, Administrator
will be launched as a remote desktop client. In the absence of parameters - as a local desktop
application

main.py - run this file to start the local desktop application

client.py - run this file to start the remote desktop client. You can specify an URL and a
port as parameters. By default, they are http://127.0.0.1:8080

index.html - the main file of web client

folders:

js - javascrip files
* css - css files

* img - image files

ui — the folder where the glade templates are stored, that are used to create desktop

applications

* static - static directory of the server

Please note the following requirements:

* to run desctop applications you need to install GTK+2 u PyGTK
* to use FireBird database, the python fdb library must be installed
* PostgreSQL requires psycopg? library

* to generate reports you should have OpenOffice to be installed

3 Building first jam.py application.

3.1 Demo project.

In the folder where the jam.py package was unzipped there is a demo folder that contains a demo
project. In order to see how the demo works it is necessary to go into this folder. To start a local
desktop applications run main.py script. To view the work of a client-server application, you must
first start the server - server.py. After this in the browser address bar, type 127.0.0.1:8080. To run
the remote desctop client go to the demo folder in an another terminal and run from the command
line ./client.py.

Next we'll try to show how to build such a project.

3.2 Administrator.

Now with the admin.py script run Administrator. Administrator - is a jam.py application intended
for application development and database administration. In fact, it contains project metadata -
database table structure definitions, programming code, etc.

On the left side of the Administrator window there is a tree view that contains a project tree. Let's
click on the Catalogs node - in the center part of Administrator catalogs list will appear.

By selecting any node of the project tree, we open it's content in the center part of Administrator
window, and as a rule, in the bottom and right side of the Administrator there are buttons that allow
us to modify it's content.

= Administrator

¥ Project D Caption Name Table view Ul EditUl FilterUl Visible Softdelete | Client module

Users 10 Customers customers demo_customers & webClient module
Roles 15 Tracks tracks demo_tracks & R
¥ Task 12 Albums albums demo_albums & &
¥ Demo 11 Artists artists demo_artists = View
B I 13 Genres genres dema_-genres od Edit
i
» Journals 14 MediaTypes media_types demo_media_types &
Tables Filters
Reports
Tables
Order
Indices
Foreign keys
Reports
Delete AW Edit New

3.3 Building first catalog.

Earlier we created the new project named Demo. As you can see in the project tree there is a
node named Demo. The tree where this node is a root node we will call a task tree. Each node of the
task tree we will call a tree Item. In fact, they all have the same ancestor class - Abstractitem. The
task tree root now have four child nodes (group items): Catalogs, Journals, Tables and Reports.
Three of them Catalogs, Journals, Tables can have its own children each of which is associated
with a database table. We will call them data items.

Accordingly, all of data items of the project are rather interchangeably divided into 3 categories:
Catalogs, Journals, Tables.

Catalogs are data items that contain information of catalog type such as customers, organizations,
tracks, etc. When creating other data items, we can create a field that is a reference to the record in a
catalog.

Journals are the structures that store information about events recorded in some documents, such as
invoices, purchase orders, etc.

Tables are essentially similar to journals. But besides that they could be embedded into data items.
Such as a list of tracks in an invoice.

Let's create catalogs. Click on the Catalogs node in the project tree. The catalog list is empty yet.
Let's start with catalog Customers. Click on the New button in the lower-right pane of
Administrator.

In the new catalog dialog fill in

* Caption is the catalog name that appears to users

* Name — the name of the catalog that will be used in programming code to get access to the
catalog object. It should be unique in the project and should be a valid python identifier.

Caption |Customers

Name |customers
Table |demo_customers
View Ul

Edit Ul

Filter Ul

visible &

softdelete &

Caption Name Type Size Item Item Field Masterfield Required Default Read only Align.
Delete Edit New
Cancel OK

Administrator will generate the name of the table associated with the Customers catalog -
DEMO_CUSTOMERS. Let's skip other attributes for a while, we will return to them later when we
start discussing interface programming, and move on to creating fields. To do this, click on the New
button in the lower right corner of the window.

In the window that appears enter the caption of the field, its name (unique in the catalog, valid
python identifier), select the type of field, set its length and press the OK button.

Caption ||

kb sladensa il

Name |firstname

Type
Size 40
Item

Item field

®| (& |&

Master field

Required
Default
Read only

Align. | ALIGN_LEFT =

Cancel || oK

We have added the field 'firstname'. Now, let's similarly add the field 'lastname’. But before saving
it, click on the check boxes Required and Default. If check-box Required is checked, the client
application will not allow a user to save a new record if this field is empty. As far as Default
check-box is concerned, the default interface implements a search procedure on default field.

Likewise, add the remaining fields and click the OK button. Administrator will save new
'Customers' catalog and create a new table DEMO_CUSTOMERS in the project database
demo.sqlite. Generally, when we create, modify or delete fields of some data item, framework
accordingly updates associated database table. This behavior can be changed by setting the
property 'DB manual update' of the project to True. To do so select 'Project' node of project tree then
click on Database button and check DB manual update check-box. From now on fields in the
database table should be updated manually. Please be careful with this option.

¥ Project Project parameters
Users Project locale

Roles

gk DB manual update |[] Database
¥ Demo
Catalogs DBtype |Sqlite = Export
g ;z;{::ls Database |demo.sqlite Import
Reports Login ik
Password
Host
Port
Encoding
Cancel OK

If we open the project database in SQLite Manager and examine the structure of demo_customers
table, we'll see that in addition to the fields added by us, there are two more fields - 'id' and 'deleted'.
They are fields common for all catalogs in the project. If we select the node Demo in the project

tree and double-click the record Catalogs we'll see the definition of these two fields.

¥ Project D Caption Name Editul View UL Filterur | Client module
Users 2 Catalogs catalogs edit.ui catalogs_view.ui filter.ui WebClient module
Roles 3 Journals journals edit.ui view.ui filter.ui server module

¥ Task

¥ Demo
Catalo e Wl [catalogs
Journ
Name |catalogs
Tables
Report ViewUl |catalogs_view.ui
Edit Ul |edit.ui

Filter Ul |filter.ui

Caption Name Type Size Item Item field Master field Required Default Readonly Align.
Deleted flag deleted BOOLEAN
Record ID id INTEGER

The first 'id' field will contain a unique identifier for each record in the demo_customers table. The
second field is a deletion flag. When we were creating the 'Customers' catalog the check-box beside
'Soft delete' attribute was checked. The meaning of this attribute is that if it is set, then when we
delete a record from this data item by means of the framework, it will not be erased physically from
the associated table, but just marked as deleted.

Start the server and in the browser address bar enter 127.0.0.1:8080. Then click on the menu
'Catalogs'. You will see that there is a sub-menu 'Customers'. Click on it. The customers grid will
appear on the page. Click again on the 'New' button in the right-bottom corner. The modal form will
be created to add a new customer. All this is possible due to a default interface that is implemented
in a new project. This interface can be programmatically changed. We will discuss how to do this in
the chapter "Interface programming". By the way, the check-box besides the attribute 'Visible' in
the new catalog dialog determines whether it will be shown in the sub-menu Catalogs. And it is
programmed in the default interface.

|_] 127.0.0.1:8080 x

& @ [} 127.0.0.1:808 e =
Jourmals Reports Catalogs
Customers
FirstName LastName Address Company __City Country _ State PostalCode SupportRepid Email Fax Phone
0
Customers
FirstName
LastName
Address
Company
City
Country
State
PostalCode
SupporiRepld 0
Email %
Fax
Phone
OK [Ctri+Ent Cancel [Esc]
“ ¢ Page 1 of0 » »
Delete Edit New

To change the default list of fields to be displayed when viewing, go to Administrator, click
on the catalog 'Customers' and press the View button in the right panel. A window will appear
where you can specify the list and the order of the fields when viewing.

Customers - view

Name Wrap Exp. Edit Name

_ : deleted
lastname id

address
company
city
country

[v][&

state
postalcode
support_rep_id
email

fax
phone

OK || cancel

On the left side are selected fields on the left — all the rest. By clicking on the buttons in the center
you can change the list of selected fields. Clicking on the bottom buttons — their order.

The same way you can change the default list of fields to be displayed when editing. Just click on

the 'Edit' button.

If we open the Demo project, we'll see that records in the catalog 'Customers' are sorted by the
lastname field. To set the default sorting order, click the button 'Order' and specify the fields to sort
by and their order.

Customers - order

Name Desc. Name
. address

city

company

country

deleted

email

[v[a

Fax

firstname

id

phone

postalcode

state

wnnnhﬂ ren id s

OK Cancel

Check the check-box in Desc column to specify a descending ordering.

3.4 Complete catalogs building.

The same way we create the Artists, Genres and Media types catalogs. But in the Albums catalog
the field Artist is a reference to a record in the Artists catalog.

Albums Search | bach
Title Artist
Bach: Goldberg Variations Wilhelm Kempff
Bach: Orchestral Suites Nos. 1 -4 of St Marin in the Fields, Sir Neville Marriner & Thurston Dart

Bach: The Brandenburg Concertos enment

Albums
Bach: The Cello Suites

Bach: Toccata & Fugue in D Minor
- Title Bach: Orchestral Suites Nos. 1-4)
Bach: Violin Concertos s Angeles Chamber Orchestra & Margaret Batjer

1.5. Bach: Chaconne, Suite in E Minor, Partta in E Maj Artist | @ Academy of St Martin in the Fields, Sir New EI

 OK [Ctri+Ent * Cancel [

“ £ Page 1 ofl 3 '8

i Delete & Edit o+ New

To change its value we should click on the button to the right of the input and select a new artist
name from the artists list.

So when creating this field we must to select 'artists' catalog in the Lookup item attribute and the

'name’ field as the Lookup field.

Caption |

Name |artist
Type
Size
Lookup item | artists =
Lookup field |G name =]

Master field | @ =

Required

Default

Read only

3

Align. | ALIGN_LEFT

Cancel oK

After we save changes to the item, in an underlying table ' DEMO_ALBUMS' of the database
demo.sqlite an 'ARTIST' field of type INTEGER will be created. This field will store the id value
of the record in 'Artists’ catalog.

The last catalog - Tracks has three such fields: album, genre and media_type. With the creation of
the Tracks catalog we complete the catalog building.

3.5 Creating journals and tables.

The project Demo has a journal - 'Invoices' and a table - 'InvoiceTable'. In principle, the creation of
data structures for journals and tables is no different from creating data structures for catalogs. So
here we'll just show how to create linked fields.

The journal 'Tnvoices' have a field named 'customer' that is a lookup field which lookup item is the
'Customers' catalog and lookup field is the 'lastname’ field.

Caption [m

Name |customer

Type
Size
Lookup item | customers =3
Lookup field | & lastname =
Master field |@& =

Required [
Default []
Read only

Align. | ALIGN_LEFT -

Cancel QK

However if want to add to the journal a field that will contain the first name of the customer there is
no need to change underlying table DEMO_INVOICES (it already have a field CUSTOMER).

Caption |Customer FirstName

Name |firstname
Type
Size

Lookup item customers

1F

Lookup field | firstname
Master Field [(ZI customer =]
Required [|
Default [
Readonly [

Align. | ALIGN_LEFT =

Cancel OK

To specify this we set 'Master field' attribute to field 'customer’. But before adding this field we

must save item changes, so field customer will be saved and it's ID value will be assigned.

So the field firstname is linked to the field customer and customer is a master field of the firstname
field and when we change customer field value by selecting record in Customers catalog the
firstname field value will change simultaneously.

After creating journal 'Invoices' and a table 'InvoiceTable' we will now add a detail item
'InvoiceTable' to the journal 'Invoices'. To do so we select the journal 'Invoices' and then click on
'Details' button.

In the 'invoices-details' dialog move invoice_table to the left by clicking on the button in the center

and save changes by clicking on OK button.

v Project D Caption Name Table Viewul EditUl Filterul Visible Softdelete | Clientmodule
Users 16 Invoices invoices demo_invoices edit_detail.ui & & webclient module
Roles

— = = Server module
v Task Invoices - details
ADBemg View
Catalogs —

» Journals Edit
Tables Filters
Reports

Details
€
3 Order
Indices
Foreign keys
Reports

OK Cancel

As a result the node 'Journal' in the task tree will have a child node 'Invoices'. If we select it the
detail items of 'Invoices' journal will be displayed in the center of the Administrator and we will be
able to program their events and change their display options.

So we have the table item named invoice_table which owner is the Tables node of the project tree
and detail item named invoice_table which owner (muster) is journal Invoices. Both of them get
their data from underlying table DEMO_INVOICE_TABLE. But detail item deals only with track
records that belong to the current invoice. If we select Demo node and then double-click Tables
record we'll see that in addition to the fields id and deleted, there are two more fields — owner_id
and owner_rec_id. So when we save invoice data, each track of this invoice will keep ID of the
journal invoice in the owner_id field (each item in the project has its own ID) and id of the current
record in the journal in the owner_rec_id field. This way we can link the same table to different
journals, catalogs or tables.

3.6 Creating filters.

If you open journal Invoices in the Demo application and then click on the Filter button a modal
dialog will appear that lets you specify journal filtering options.

7 localhost x

4 € | [localhost LA
Journals Reports Catalogs About

Invoices Filter - Period range from: 10/22/2013

Customer Billing Address Billing City Billing State Billing Country Billing Postal Code Invoice Date SubTotal Tax Total
Terhi Himé&ldinen Porthaninkatu 9 Helsinki Finland 00530 12/14/2014 $13.86 3070 $14.56
Kara Nielsen Sender Boulevard 51 Copenhagen Denmark 1720 12/09/2014 $8.91 3045 $9.36
Robert Brown 796 Dundas Sireet West Toronto ON Canada MBJ 1V1 12/06/2014 $594 5030 $6.24
Victor Stevens 319 N. Frances Street Madison wi UsA 53703 12/05/2014 $495 3025 $5.20
John Gordon 69 Salem Street Boston MA UsSA 2113 12/04/2014 $297 35015 $3.12
Kathy Chase 801 W 4th Street Reno NV UsA 89503 12/04/2014 $198 $0.10 $2.08
Dan Miller 541 Del Medio Avenue Mountain View CA USA 94040-111 11/21/2014 $0.99 $0.05 $1.04
Helena Holy Rilska 3174/6 Invoices - filter 11/13/2014 $25.86 $1.30 $27.16
Diego Gutiérrez 307 Macacha Gliemes 11/08/2014 $8.91 3045 $9.36
Enrique Mufioz C/San Bernardo 85 11/05/2014 $5.04 3030 $6.24
Hugh OReilly 3 Chatham Street Period range from (/227208 B 11/04/2014 5396 $020 54.16
Terhi Him&ldinen Porthaninkatu 9 o = 11/03/2014 $198 3010 $2.08
Wyatt Girard 9, Place Louis Barthou Customer (=] - 11/03/2014 $198 $0.10 $2.08
Marc Dubois 11, Place Bellecour 10/21/2014 $0.99 5005 $1.04
Patrick Gray 1033 N Park Ave ¥ Apply % Close 10/13/2014 $12.87 3065 $13.52
Luis Gongalves Av. Brigadeiro Faria Lima, 217 10/08/2014 $1.98 35010 $2.08

“ < Page 1 of 7 > »
Track Quantity UnitPrice Amount Tax Total

Higher Ground, album: UB40 The Best Of - Volume Two [UK], genre: Reggae, media type: MPEG audio file il $0.99 $0.99 $0.05 $1.04
Dreams, album: The Best Of Van Halen, Vol. |, composer: Edward Van Halen, Alex Van Halen, Michael Anthony,/Edward Van 1 $0.99 $0.99 $0.05 $1.04
Eruption, album: Van Halen, composer: Edward Van Halen, Alex Van Halen, Michael Anthony and David Lee Roth, genre 1 $0.99 $0.99 $0.05 $1.04
On Fire, album: Van Halen, composer: Edward Van Halen, Alex Van Halen, Michael Anthony and David Lee Roth, genre 1 $0.99 $0.99 $0.05 $1.04
Year to the Day, album: Van Halen Ill, composer: Van Halen, genre: Rock, media type: MPEG audio file 1 $0.99 $0.99 $0.05 $1.04
A Bencao E Qutros, album: Vinicius De Moraes, genre: Latin, media type: MPEG audio file 1 $0.99 $0.99 $0.05 $1.04
Um Homem Chamado Alfredo, album: Vinicius De Moraes, genre: Latin, media type: MPEG audio file 1 $0.99 $0.99 $0.05 $1.04

T Delete & Reports o ¥ Filter & Edit &= New

To create or modify a filter in the Administrator choose journal Invoices and click on the Filter
button located on the right panel. This opens a form containing the list of available filters. To add or
edit a filter click on the appropriate button on the form. Filter editor will appear. After that, you
should specify the field which will be used to filter records and fill in the caption, name and type of
the filter.

Filter Ul Visible Softdelete Client module

* Project 1D Caption Mame Table View Ul Edit Ul
Users 16 Invoices invoices demo_invoices edit_detail.ui & & webclient module
Roles server module
¥ Task
¥ Demo Field Caption Name Filter type Visible View
Catalogs invoicedate Period range from invoicedate1 GE & edit
* Journals invoicedate to invoicedate? LE
Tables I Filters
Reports -
Field [[HERET = Details
Caption |Period range from
Order
Name |invoicedate1 Indices

Filter type | GE = Foreign keys
Visible & Reports

Cancel OK

Delete AW Edit New

3.7 Creating indices.

We have created all the needed data structures. We now proceed to the creation of indexes. Select
Invoices and click on the Indices button. In a window that appear, lets click on the "New" button,
and specify descending index on the field invoicedate. If necessary, change the name of the index.

Index |DEMO_INVOICES_IDX

Descending |&

Name Name

deleted
invoicedate

billing_country
billing_postal_code
billing_state
customer
firstname

id

subtotal

tax

v

taxrate

to[:?l

OK || Cancel

Now click on the OK button and create the index.
In the same way we'll create index for the table InvoiceTable on fields owner_id and owner_rec_id.

If an item has a lookup field and in the definition of lookup item of this field soft delete attribute is
not set, in order to preserve the integrity of the data, we can create a foreign key. To do this, click on
the Foreign keys button, select the field and press OK.

3.8 Building reports.

To create a report, you must first prepare a report template in OpenOffice (LibreOffice) Calc. The
template files are located in the report folder of the project directory. The following figure shows a
template of the Invoice report. Reports in jam.py are band-oriented. Each report template is divided
into bands. To set bands use the leftmost column of a template spreadsheet. In the Invoice report
template there are three bands: title, detail and summary. In addition, templates can have
programmable cells. For example, in the template of Invoice report the 17 cell contains the text %
(date)s. Programmable cell begins with %, then follows the name of the cell in the parenthesis
which is followed by characters s.

invoice.ods - LibreOFfice Calc

- [- i | R S eec gee L) [.o m_oZ A
B - & | =& YR & O TL = @ sz wn @ .ﬁ ® -
@ LiberationSans |+ | |9 - A 4 A % o i v B2
B19 v| fo 2 = |%(quantity)s -
- |~ ¢ [o | e [fF | 6 [W | v [s | K £
" . YOur Company, Inc INVOICE
2 Address
3 City, State, ZIP (555) 555-555
L4
3 SOLD TO:
6 Name Yh(customer)s INVOICE NUMBER | 536524
7 Address %h(address)s INVOICE DATE |%(date)s
8 City, State, ZIP %(city)s OUR ORDER NO.
9 YOUR ORDER NO.
10 TERMS
11 SALES REP
12 SHIPPED TO: %{shipped)s SHIPPED VIA
13 Same FO.B.
14 PREPAID or COLLECT
15
16 Sales Tax Rate:
17
18 QUANTITY DESCRIPTION UNIT PRICE | AMOUNT
| Y(quantity)s | %i(track)s Y(unitprice)s (sum)s
det
20 |sur SUBTOTAL | %(subtotal)s
21 | TAX %6 (tax)s
22 FREIGHT %(total)s
23
24 DIRECT ALL INQUIRIES TO: MAKE ALL CHECKS PAYABLE TO: PAYTHIS
25 Name Your Company, Inc. AMOUNT
26 (555) 555-555 Attn: Accounts Receivable
27 email: someone@somename.com Address
| 28 | City, State, ZIP
29 THANK YOU FOR YOUR BUSINESS!
30
31
32 L
nlq:!»u\nucr‘l(if' U bl
Sheet 1/ 1 Default -] Sum=0 - O + 100%

Let's add Invoice report to our project. To do this, choose the Reports node in the project
tree, click the New button and fill in the caption, name and template file name of Invoice report in
the Caption, Name and Report template fields accordingly.

¥ Project D Caption Name Report template Params Ul Visible

Users Print invoice invoice invoice.ods [
Roles
¥ Task

¥ Demo
Catalogs
Journals
Tables
Reports

Caption |Printinvoice

Name |invoice

Report template Iinvoi(e.odsl

Params Ul

visible &

Cancel OK

Since all reports are generated on the server, it is necessary to pass to the server the id value of the
current invoice. To do this, we will create a report parameter. Let's click on the Report params
button in the right pane, and then in the dialog box that appears click on the New button.

¥ Project D Caption Name Report template Params Ul Visible Client module

Users 19 Print invoice invoice invoice.ods WebClient module
Roles
¥ Task
¥ Demo Caption Name Type Lookup item Field Required Visible Align.

Catalogs id id INTEGER ALIGN_RIGHT

Server module
Report params
» Journals Report params

Tables
Reports

Caption |id

Name |id
Type |INTEGER =
Lookup item |G =]
Field |@
Required
Visible

Align. | ALIGN_RIGHT =

Cancel OK

Delete A | Edit New

Lets fill in the form that appears caption, name and type of the parameter, uncheck check-box
Visible and click on OK to save information.

The very process of generating a report on the server will be discussed later in the chapter
"Report Programming".

Now before proceeding to consider the programming of jam.py framework we'll discuss
project parameters and its security system.

3.9 Project parameters.

To setup the parameters of the project select node Project and then click on Project parameters

button.

¥ Project
Users
Roles
¥ Task
¥ Demo
Catalogs
» Journals
Tables
Reports

Safe mode ||

debugging
Log file

Connection poolsize

Cancel oK

Project parameters

Project locale

Database

Export

Import

Print

* Safe mode - If safe mode is enabled, authentication is needed for user to work in the system
(See "Users and Roles").

* Log file - If you specify a log file, output to stdout / stderr is redirected to that file.

* Connection pool size — the size of the server database connection pool.

¥ Project
Users
Roles
¥ Task
¥ Demo
Catalogs
+ Journals
Tables
Reports

Decimal point

Monetory decimal point

Monetory thousands separator

Currency symbol

Number of Fractional digits

Currency symbol precedes the value (positive values)

Currency symbol precedes the value (negative values)

Currency symbol is separated by a space (positive values) |

Currency symbol is separated by a space (negative values) |

Symbol for a positive monetary value

S

Symbol For a negative monetary value |-

The position of the sign (positive values)
The position of the sign (negative values)
Date Format string

Date and time format string

%m/%d /%Y

%m/%0 /%Y %H:%M

Cancel

OK

3.10 Users and roles.

Project parameters

Project locale

Database

Export

Import

Print

If parameter Save mode is set to work on client user must enter his login and password

Log in

Login admin|

Password -

OK

But before that, the user must be registered in the system. To register user select Users node, click
New and fill in the form that appears:

¢ Name — user name

Login - login
* Password - password
* Role — user roles (see below)

¢ Information - some additional information

* Admin - if this flag is set, the user has the right to work in Administrator.

¥ Project Name Login Password Role Information Admin
Users Bob admin 111 Administrator &
Roles Tom user 222 User

¥ Task
¥ Demo
Catalogs
» Journals

Tables Name [Toml
Reports

Login |user
Password | 222

Role | Gf User

U

Information

Admin

Cancel OK

Delete Edit New

Each user must be assigned to one of roles defined in the system. A role defines the user's rights to
view, create, modify, and delete data. To work with roles select node Roles in the project tree. To
add or delete a role, use the buttons New and Delete. To set permissions for a role, put a check mark
next to the appropriate column of the item: View, Create, Edit, Delete (allowed to view, create,
modify and delete, respectively).

Administrator

¥ Project 1D Roles Item View Create Edit Delete

Users 1 Administrator Albums [¥ ¥ &

Roles _ Artists & g ¥ @

¥ Task Customers & " ¥ &
¥ Demo Genres &
Catalogs MediaTypes =4

* Journals Tracks g ¥ @ @

Tables Invoices [g ¥ &

Reports InvoiceTable & ¥ ¥ &

Customer list [& & &

Customer purchases & & & &

Print invoice) & & &

Delete New Selectall Unselectall

4 Jam.py programming.

In the previous chapter we have created all the necessary data structures. Now, in order to finish a
project, we need to understand how to program in jam.py. Now, in order to illustrate the basic
principles of programming in jam.py, we define an event handler on_after_append Invoices journal.
This event fires immediately after adding a new record to the journal. To do so click on Journals
node and select Invoices record. In the right pane of Administrator window on the top there are
three buttons Client module, WebClient module, Server module. Click on the Client module button.
Event Editor of the journal Invoices will appear.

4.1 Event Editor .

In the event editor to the right there is an information pane with four tabs:

* Module - this tab displays all events and functions defined in the editor, double-click on one
of them to move the cursor to the proper function.

* Events - displays all the published event of the item, double-click to generated wrapper for
the event (see. Figure) .

* Task - the task tree, double-click on the node to print it's name under the cursor.

* Fields - the field list of the current item, double-click on one of the fields to print it's
field_name under the cursor.

Module: demo_client.journals.invoices

Module | Events | Task | Fields
def on_after append(item):

on_after append pa§s| -
on_after_apply
on_after_cancel
on_after_delete
on_after_edit
on_after_open
on_after post
on_after_scroll
on_after_show edit form
on_after_show_filter_form
on_after_show_view_form
on_before append
on_before apply
on_before_cancel
on_before_delete
on_before_edit
an_before_field changed
on_before open
on_before post
on_before_scroll
on_before show edit form
on_before_show_filter_form
on_before_show view form
on_edit form close query
on_edit keypressed
on_field changed
on_field lookup_item show
on_field validate
on_filter_changed
on_filter lookup item show
on_filter_record
on_get_field text
on_view keypressed

modified: True line: 4 col: 9 Cancel Save

Let's select the Events tab and double-click on_after_append event. In the editor on_after_append
function will be created. Note that all events in jam.py start with on_, and a parameter of the event
is an object that generated this event. Now we'll write the body of the function:

import datetime
def on_after append(item):

item.invoicedate.value = datetime.datetime.now()

This code means that immediately after adding a new record in the desktop or client desktop
application, the value of the invoicedate field will be equal to the current date. Let's save this code
by pressing Save.

Press the WebClient Module and create the same handler in JavaScript for web interface application
(in browser):

function on _after append(item) {

item.invoicedate.value = new Date();

Finally we'll list Event Editor shortcuts:
e Ctrl+S — save,

e Ctrl+F — find,

* Ctrl+H — find and replace,

* Ctrl+L — go to the line,

e Ctrl+I — indent selected lines,

e Ctrl+U — unindented selected lines,

¢ Ctrl+E — comment/uncomment selected lines,

4.2 Task tree.

When the server is started and receives first request from the client it builds from the metadata
stored in admin.sqlite a task tree. After that it sends data to the client which in turn builds it's own
task tree. All items of this trees have common ancestor AbstractItem and common attributes:

* ID - unique in the framework ID of the item,
* owner - immediate parent and owner of the item,
¢ task — root of the task tree,

¢ items — list of child items,

mon

* item_type — type of the item — one of the following values "task", "catalogs", "journals",

mon mon

"tables", "reports”, "catalog", "journal”, "table", "report", "detail",

* item_name — the name of the item that will be used in programming code to get access to
the item object,

* item_caption — is the item name that appears to users,
and methods:

* find(name) — looks among immediate children for an item with item_name that equals

name parameter and returns it if it's found, otherwise return None for python or undefined
for JavaScript

* item_by_ID(ID) - looks among all its children for an item with ID that equals ID parameter
and returns it if it's found, otherwise return None for python or undefined for JavaScript

So the following code where task is the root of the project tree:

def print item(item, ident):
owner_name = None
if item.owner:
owner_name = item.owner.item_name
print '%s %s - item type: "%s", ID: %s, item caption: "%s", owner: %s' % \

(3 * ident * ' ', item.item name, item.item type, item.ID, item.item caption, owner name)

print item(task, 0)
for group in task.items:
print item(group, 1)
for item in group.items:
print_item(item, 2)
for detail in item.items:

print item(detail, 3)

will print:

demo - item type: "task", ID: 5, item caption: "Demo", owner: None
catalogs - item type: "catalogs", ID: 6, item caption: "Catalogs", owner: demo
customers - item type: "catalog", ID: 10, item caption: "Customers", owner: catalogs
artists - item type: "catalog", ID: 11, item caption: "Artists", owner: catalogs
albums - item type: "catalog", ID: 12, item caption: "Albums", owner: catalogs
genres - item type: "catalog", ID: 13, item caption: "Genres", owner: catalogs
media types - item type: "catalog", ID: 14, item caption: "MediaTypes", owner: catalogs
tracks - item type: "catalog", ID: 15, item caption: "Tracks", owner: catalogs
journals - item type: "journals", ID: 7, item caption: "Journals", owner: demo
invoices - item type: "journal", ID: 16, item caption: "Invoices", owner: journals
invoice table - item type: "detail", ID: 18, item caption: "InvoiceTable", owner: invoices
tables - item type: "tables", ID: 8, item caption: "Tables", owner: demo
invoice table - item type: "table", ID: 17, item caption: "InvoiceTable", owner: tables
reports - item type: "reports", ID: 9, item caption: "Reports", owner: demo
invoice - item type: "report", ID: 19, item caption: "Print invoice", owner: reports

purchases report - item type: "report", ID: 20, item caption: "Customer purchases ", owner:
reports

customers report - item type: "report", ID: 22, item caption: "Customer list", owner: reports
In addition every item is an attribute of its owner and all catalogs, journals and tables are attributes
of the task. So:
albums = task.catalogs.albums
print item(task.journals.invoices.invoice table)
print item(task.invoices.invoice table)
print_item(task.invoice table)

print_item(albums.task.invoices)

will print:

invoice table - item type: "detail", ID: 18, item caption: "InvoiceTable", owner: invoices
invoice table - item type: "detail", ID: 18, item caption: "InvoiceTable", owner: invoices
invoice table - item type: "table", ID: 17, item caption: "InvoiceTable", owner: tables

invoices - item type: "journal", ID: 16, item caption: "Invoices", owner: journals

4.3 Data programming.
All catalogs, journals and tables as well as their detail items (items with item_type of "catalog",
"journal", "table", "detail") have access to the underlying tables from the project database.
As an example, the following function will print the names of clients:
def print customers(customers):
customers.open ()
for c in customers:

print c.fisrtname.value, c.lastname.value

The function print_customers gets a customers item as a parameter. Then as a result of the open
method execution a SQL query is generated and executed on the server and resulting record list is
returned to the item customers. After that a loop through all the records is performed and for each
record the name and surname of the client is printed. This function will work both on the client and
the server.

For the web client, this functionality is implemented as follows:

function print customers(customers) {
customers.open();
customers.each(function(c) {

console.log(c.firstname.value, c.lastname.value);

4.3.1 Fields.

All items, working with database data have a fields attribute - list of field objects, which are
used to reprisent fields in item records. Every field have the following attributes :

* ID — unique field ID in the framework,
¢ owner — an item that owns this field,

* field_name - the name of the field that will be used in programming code to get access to
the field object,

* field_caption - is the field name that appears to users,

mon

* field_type - type of the item — one of the following values: "text", "integer", "float",
'currency’, "date", "datetime", "boolean", "blob",

» field_size — a size of the field with type "text",

* required — should have a value,

* read_only — can't be changed in the interface controls,

* lookup_item — for lookup fields, that store record id of another item, reference to this item.

* lookup_field — field name in lookup item.

¢ master_field - reference to master field.
To get access the data fields have the following properties:

* value — this property allows to get or set field value of the current record, the value is
converted to the type of the field. So for fields of type integer, float u currency, if value for
this field in database table record is NULL, value of this property is 0. To get unconverted
value use property raw_value,

¢ text - the text value of the field,

* lookup_value - for lookup fields, the field value property is id value of the record in the
lookup item, lookup_value is the value of lookup_field in this record,

* lookup_text - the text value of the lookup_value,

» display_text — if field owner have an on_get_field_text event handler and its result value is
not None (undefined), then this property value is the result value. Otherwise for lookup
fields it's value is the lookup_text property value and for other fields it is text property value
with regard of project locale parameters.

def print field data(field):

print '%s: field type: "%s"' % (field.field name, field.field type)

print ' value: %s, value type: %s' % (field.value, type(field.value))
print ' text: "%s"' % field.text

print ' lookup value: %s' % field.lookup value

print ' lookup text: "%s"' % field.lookup text

print ' display text: "%s"' % field.display text

print_field data(invoices.id)

print field data(invoices.deleted)
print field data(invoices.invoicedate)
print field data(invoices.customer)
print field data(invoices.firstname)
print_field data(invoices.taxrate)

print_field data(invoices.total)

id: field type: "integer"
value: 411, value type: <type 'int'>
text: "411"
lookup_value: None
lookup_text: ""
display text: "411"
deleted: field type: "boolean"

value: False, value type: <type 'bool'>

text: "No"
lookup value: None
lookup_text: ""
display text: "No"
invoicedate: field type: "date"
value: 2014-12-14, value type: <type 'datetime.date'>
text: "12/14/2014"
lookup value: None
lookup_text: ""
display_text: "12/14/2014"
customer: field type: "integer"
value: 44, value type: <type 'int'>
text: "44"
lookup value: Hamalainen
lookup_text: "Hamalainen"
display text: "Terhi Hamalainen"
firstname: field type: "integer"
value: 44, value type: <type 'int'>
text: "44"
lookup value: Terhi
lookup_text: "Terhi"
display text: "Terhi"
taxrate: field type: "float"
value: 5, value type: <type 'int'>
text: "5"
lookup value: None
lookup_text: ""
display text: "5"
total: field type: "currency"
value: 14.56, value type: <type 'float'>
text: "14.56"
lookup value: None
lookup_text: ""

display text: "$14.56"

In the example above the lookup_text value of the field customer is 'Hamdldinen', while the
display_text value - '"Terhi Hamaéldinenand'. This is because the journal Invoices has an event
handler on_get_field_text:

Python:

def on get field text(field):

if field.field name == 'customer':
return field.owner.firstname.lookup text + ' ' + field.lookup text
JavaScript:

function on get field text(field) {
if (field.field name === 'customer') {

return field.owner.firstname.lookup text + ' ' + field.lookup text;

4.3.2 Filters.

Previously, we have created filters for journal Invoices. We now show how use them in
programming code.

Each item has an attribute filters - list of filter objects that were created in the Administrator. Each
filter has the following attributes:

e owner — an item that owners this filter,

e filter_name — the name of the filter,

» filter_caption - the name of the filter used in the visual representation in the client
application,

» filter_type — type of the filter,

» visible — if this attribute value is true, a visual representation of this filter will be created

when creating filters in the client application by a create_filter_entries method of the owner
item.

¢ value — filter value,

By filter_name we can get access to the filter object as well as by filter_by_name method.
For example:
* Python (client and server):

now = datetime.datetime.now() - datetime.timedelta(days=7)

item.filters.invoicedatel.value = now

or

item.filter by name('invoicedatel').value = now
e JavaScript:

var now = new Date();
now.setDate(now.getDate() - 7);

item.filters.invoicedatel.value = now;

or

item.filter by name('invoicedatel').value = now;

In the above example invoicedatel filter value of the item has been changed.

4.3.3 Getting data records.

To obtain the data, in addition to direct SQL query to the database, which will be described in
chapter 'Programming the server', use an open method:

* Python (client and server):

def open(self, expanded=None, fields=None, where=None, order by=None, open_empty=False,
params=None, offset=None):

* JavaScript: .open(options, callback)

For JavaScript order of parameters does not matter. Options parameter is an object (a dictionary)
whose attributes match the parameters of the python open function, with the same default values.

If the method is called on the client, it send a request to the server with the parameters of the call.

On the server, based on the parameters, SQL query is generated and executed, and the result of this
query - the list of records — is returned to the open method. If an on_select event if defined on the
server for the item, then the parameters of the request can be intercepted and independently
generated list of records can be returned (see. Programming the server).

All requests of the python client run synchronously. For the JavaScript client all depends on the
callback parameter. If this is not a parameter-function in the open function call, the request is
executed synchronously, otherwise the request is executed asynchronously and after that, as records
are received, this function will be executed.

The fields parameter is a list of field names and sets the fields for which the data will be obtained. If
not specified, the data will be obtained for all fields.

When the expanded parameter is set to true (the default), there are lookup_value as well as values
for lookup fields in the resulting records . Otherwise, lookup values are not returned.

This where parameter determines the filtering of records in sql query on the server. If this parameter
is not specified, by default, the records are filtered according to the values stored in the filters (if
any) described above. Where the parameter is a dictionary whose keys are the names of the fields
that are followed, after double underscore, by a filtering symbol. In the framework, the following
symbols are defined to filter field values:

* 'eq'— equal,

* 'me'— not equal,

¢ 'It' — less than,

* 'le' - less than or equal,

1. 'gt'— greater that,

» 'ge' - greater that or equal,

* 'in'— SQL operator IN is applied to the field value,

* 'not_in' - SQL operator NOT IN,

* 'range' - SQL operator BETWEEN,

e 'isnull' - SQL operator IS NULL,

* 'exact' - exact equality,

e 'contains' - field value contains,

» 'startwith' - field value starts with,

¢ 'endwith' - field value ends with,

For 'eq' filtering symbol '__eq' can be omitted. For example {'id": 100} is equivalent to

{'id__eq': 100}.
For example:

* Python (client and server):

where = {
"customer': report.customer.value,
'invoicedate ge': report.invoicedatel.value,
'invoicedate le': report.invoicedate2.value
}

invoices.open(where=where)
* JavaScript:

where = {
customer: report.customer.value,
invoicedate ge: report.invoicedatel.value,
invoicedate le: report.invoicedate2.value
}i

invoices.open({where: where});

Calling method set_where before performing the open method is similar to specifying the parameter
where:

* Python (client and server): def set where(self, **fields):

invoices.set where(customer=report.customer.value,
invoicedate ge=report.invoicedatel.value,
invoicedate le=report.invoicedate2.value)

invoices.open();

e JavaScript: .set where(fieldsDict)

invoices.set where({
customer: report.customer.value,
invoicedate ge: report.invoicedatel.value,
invoicedate le: report.invoicedate2.value
1)

invoices.open();

After execution of an open method a filtering defined by a set_where method is reset.

If the order parameter is not specified, then the returned records are sorted according to the order
specified in the Administrator (button Order). Order parameter is a list of field names. If there is a
sign '-' before the field name, then on this field records will be sorted in decreasing order:

* Python (client and server):
customers.open(order by=['-country', 'lastname'])
e JavaScript:
customers.open({order by=['-country', 'lastname']});

Calling method set_order_by before performing the open method is similar to specifying the
parameter order.

For example:

* Python (client and server): def set order_by(self, *fields)

customers.set order by('-country', 'lastname')

customers.open()
* JavaScript: .set_order_by(fieldList)

customers.set order by(['-country', 'lastname']);

customers.open();
After execution of an open method a sorting order defined by a set_order_by method is reset.
After successful execution of this method the active property is set to True.

The result returned by the open method depends on the value of the auto_loading attribute . If this
attribute value is set to True, the open method returns not all records but just the first, the number of
which corresponds to the value of the limit attribute, starting with the record specified by the offset
parameter.

This mechanism is used for automatic record loading when viewing data in a grid component.
Use a record_count method to get the total number of records that have currently been fetched.

This method initializes all the structure necessary for the data processing and must be performed
before calling any other methods that are dealing with the data.

4.3.4 Navigating through records.

After receiving the data, a cursor of the item (pointer to the current record) is set to the first record.
To change the position of the cursor use the following methods:

» first - the cursor jumps to the first record

* last - the cursor moves to the last record

* next - the cursor moves to the next record

e prior - the cursor moves to the previous record

In addition there are bof and eof methods:

* eof - returns true in the following cases:

o record list is empty,

o was called an item last method,

o last calling of a next method failed because the current record is already the last record.
* bof - returns true in the following cases:

o record list is empty,

o was called an item first method,

o last calling of a prior method failed because the current record is already the first record.

Use rec_no property to get or set the value of the current record number.
For example the following code saves the current cursor position prints a list of customers, then the
cursor is placed in the original position.

* Python (client and server):

rec = customers.rec no

customers.first()

while not customers.eof():
print customers.lastname.display text
customers.next()

customers.rec_no = rec
* JavaScript:

var rec = customers.rec no;

customers.first();

while (!customers.eof()) {
console.log(customers.lastname.display text);
customers.next();

}

customers.recino = rec;
There is a short-form of the record loop:
* Python (client and server):

for ¢ in customers:

pass

is equivalent to
customers.first()
while not customers.eof():
customers.next()

e JavaScript:
customers.each(function(c) {
1)
is equivalent to

customers.first();
while (!customers.eof()) {
customers.next()
}
C and customers are the same in the above example, they are pointers to the same object. To exit the

JavaScript short-form loop return false from callback function.

When the position of the cursor changes, then before change an on_before_scroll event handler is
fired (if defined), after the change - an on_after_scroll event handler.

4.3.5 Changing the data.
After open method is executed the item is in a browse mode.
To change field values of the current record, item state should be changed to edit state by calling
edit method. After changing field values save changes by calling post method().

invoices.edit()
invoices.invoicedate.value = datetime.datetime.now()

invoices.post()

Post method returns item into browse state again.

Addition is performed similarly, except that instead of the edit method you must call an append (to
add a record to the end of the list) or insert (to insert as a first record of the list) method to transfer
item in insert state:

invoices.append()
invoices.invoicedate.value = datetime.datetime.now()
invoices.post()
When there is no need to save changes then instead of the post call cancel method:

invoices.append()
invoices.invoicedate.value = datetime.datetime.now()

invoices.cancel()

Cancel method cancel changes and returns item to the browse state again.

To delete record call delete method:

invoices.delete()

All such modifications are made on the current set of records and do not affect the values stored in
the database. If a log_changes attribute of the item is True (the default), then a log accumulating all
changes is supported and they can be stored in the database by calling an apply method.

In the following example all records are deleted, after which they are removed from the database.
item.first();

while not item.eof():
item.delete()

item.apply()

Before each of these methods is executed an event handler on_before + method name
(on_before_apply for example) is fired (if defined), after - on_after + method name event handler.

To cancel execution of a method return False from on_before event handler or raise exception in it.

4.3.6 Working with details.

If an item has detail items and its details_active attribute value is True, then when skipping to
another record, record lists of its details are automatically updated (they are reopened). Otherwise
you should reopen them yourself.

invoices.details active = False
for inv in invoices:

inv.invoice table.open()
Default value of details_active is False.

Detail items have an attribute disabled with a default value False. When value of disabled is True,
then their record list is not updated.

To modify detail item, the state of its master item should be changed to edit state.

invoices.edit()

for t in invoices.invoice table:
t.edit()
t.date.value = invoices.date.value
t.post()

invoices.post()

invoices.apply()

Master item is responsible for storing changes of its details on the server by calling its apply
method.

4.4 Client-side programming.

4.4.1 Main form.

When we run a python client, after receiving data from a server and a task tree initialization, the

application main form is created. And before this form will be displayed the client generates an
on_before_show_main_ form event.

Similarly, a browser, after DOM is loaded and task tree is initialized, also generates an
on_before_show_main_form event.

4.4.2 Forms.

One of the main concepts of the framework client-side programming is the concept of form. The
forms are based on templates. For each item working with data form templates for viewing and
editing of the data and template for filter form can be set. For reports — report parameters form
template.

4.4.2.1 Client forms in python and pygtk.

Form templates are located in the ui folder of the project directory. Form templates are interface
files created in Glade — a user interface designer for GTK + and GNOME. In the figure below the
columns View UI, Edit UI and Filter Ui contain file names of view, edit, and filter form templates .

o Administrator

¥ Administrator D Caption Name Table View Ul Editul Filterul Visible Softdelete | Client module

Users 6 catalogs ~ catalogs_view.ui editul 1 & | webClient module
Roles 7 Journals journals view_detail.ui edit.ui filter.ui SenEnmasile
¥ Task 8 Tables tables view.ui edit.ui filterui & ;
¥ Demo 9 Reports reports params.ui
Catalogs
¥ Journals
Tables
Reports

When a form template for an item is not set, the framework looks for a form template of its owner.
If you select Catalogs node in the task tree, you'll see that form templates for catalogs are not set. So
all catalogs have common form templates that are defined in their owner — Catalogs group item.

(] Administrator

v Administrator ID Caption Name Table View Ul EditUl Filter Ul Visible Softdelete | Client module

Users 10 Customers customers demo_customers & & webClient module
Roles 15 Tracks tracks demo_tracks server module
¥ Task 11 Artists artists demo_artists
¥ Demo 12 Albums albums demo_albums View
13 Genres genres demo_genres —
i
» Journals 14 MediaTypes media_types demo_media_types ¥
Tables Filters

If for some catalog there is a need for a template that is different from others, it is necessary to
create a interface template in the Glade editor, save it to the file in the ui folder, and specify this file
name as this catalog form template.

The figure below shows view.ui form template in the Glade editor. Please note that the name of the

main window of the template should be 'window1'.

¢ i 8 dh L &
| ¥ Actions view.ui % < search widgets >
B @=m @ e f ¥ [J window1 GtkWindow
¥ Toplevels M= ?Od}’ Gfk:B‘:x
N — -0 grid_panel GtkAlignment
CEEZEE@E @ O
0 — separator GtkHSeparator
= = ¥ (10 btns_hbox GtkHBox
¥V Containers = delete_button GtkButton
mE HEHOGO = = new_button GEtkButton
— Mg - : 8 & edit_button GtkButton
o &= select_button GtkButton
- Ot . i
& >- 0GR g Filter Edit || New = statusbar Gtkstatusbar
¥ Control and Display
: = Button Properties - GtkButton [delete_button]
E - 08 8- E =
i ok P General | Packing Common | Signals (5.
D= § = | =@ Name: delete_button
& = o = Border relief: Normal
E— | » =® Focus on click: | Yes
P Composite Widgets Horizontal alignment 0.50
for child: 2
P Tree Model : Vertical alignment For 0.50
P Text Buffers child:
P Miscellaneous RESPOnSElLE
Action

P Specialized Widgets

Related Action:
P> Gtk+ Obsolete elated Action

Use Action

Appearance: No

@® Configure button content

T S B S

After view, edit or filter form is created to get access to widgets on these forms, you can use
attributes of the view_form, edit_form and filter_form objects respectively.

For example:
item.view form.delete button.set visible(False)
makes the button with the name 'delete_button' on the view form of the item invisible.

The same way the task.main_form is the object for the main form of the task item and
report.params_form is an object for the form to specify parameter values of the report item.

Besides, these objects are wrappers over gtk.Window. Use window attribute of these objects to get
access to the gtk. Window. The code below maximizes the view form:

item.view form.window.maximize()

Furthermore builder attribute of form objects is gtk.Builder object. So you can connect signal
handlers defined in ui-template:

dic = {

"on_ok button clicked" : item.apply record,

"on_cancel button clicked" : item.cancel edit,

}

item.edit form.builder.connect signals(dic)

4.4.2.2 Client forms in web interface.

Project templates are located in div with the template class inside the body tag in the file

index.html of the project directory.

1 <!DOCTYPE html>

2 ﬁchtml lang=" 5 lang ¢ -

3 B <head=>

4 <meta charset= f-g"=

5 <title></title>

] <meta name= content= =device- initial-sca =
7 <link rel="1 href="/1 type="1 1" =</ link>

8 <link href= bootst rel="stylesheet"»

9 <link href= onsive rel="s sheet"=

18 <link href= rel= et

11 <link href= rel= -

12 <link href= rel="stylesheet"=

13 + </head>

14

15 O <body=>

16 <iframe src= name= style= e'=<fiframe>
17 <div class= >

18 <div class= id"=

19 O <div id="" class="spanZ title-le >

28 <h3 id="t class= "=e</h3>

21 | </div

22 o <div class=": style="text-all ight;">

23 <div id="1 style= 1 »</div>
24 </div=>

25 - </div>

26 O <div id= tent">

27 o </div>

28 - </div>

29

30 O =div class="1¢ style="displa e"s

31

32 = <div id="1 enu">

33 © <div class="tabled">

34 O <ul id= class="n style="margin-bott 18px; ">
35 </ul=

36 O <ul id="s class= style= gin-botft =
37 </ul=

38 </div>

39 <fdiv>

40
41 © <div class="cataloc >

42 O <div class="modal-body">

43 [<div class="view-title">

44 g <div class= -fluid"=

45 O <div id= class= -

46 </div>

After task initialization on the client, this div is cut out of the page, but you can get access to its
content through a templates attribute of the task item , which is a JQuery object storing this div
content. For example

$("#content").append(task.templates.find("#mainmenu"));

will append tag with id mainmenu to from templates div to the tag with id content.

To add a form template for an item you should add a div with the name-suffix class in the templates
div, where name is the name of the item and suffix — the form type: view, edit, filter, params. For
example:

<div class="invoices-edit">

</div>

is an edit form template to the invoices item. This div have to contain html representation of the
item data.

For a detail item before its name should be the name of its owner separated by a hyphen:

<div class="invoices-invoice table-edit">

</div>

If an item doesn't have a form template then its owner form template will be used. So the template

<div class="catalogs-edit">

</div>
will be used as edit form template to create catalogs that do not have its own edit form templates.

After view, edit or filter form is created to get access to objects on these forms, you can use the
view_form, edit_form and filter_form attributes of the item object respectively. They are JQuery
objects. For example:

item.view form.find(“#delete-btn”).hide();

makes the button with the id 'delete_button' on the view form of the item invisible.

4.4.3 Client Methods.

4.4.3.1 View method.

In the on_before_show_main_form events handler of the Demo application main menu is created.

And when we click on menu items of the main menu the view method of a corresponding item is
executed:

* Python: def view(self, widget):
e JavaScript: .view(container)

The view form will be created in a modal window, except when container parameter (for JavaScript
client) is specified. In this case it will be added to the container (container is a JQuery object).

During a view method execution

* client looks for a view template, on which a view_form object is created

e if for a task an on_before_show_view_form event handler is defined, this handler is
executed to which this item is passed as a parameter

e if for an items's owner an on_before_show_view_form event handler is defined, this handler

is executed to which this item is passed as a parameter

¢ if defined, an on_before_show_view_form event handler of an item is executed to which
this item is passed as a parameter

* view form visually displayed on the screen

e if for a task an on_after show_view_form event handler is defined, this handler is executed
to which this item is passed as a parameter

e if for an items's owner an on_after show_view_form event handler is defined, this handler

is executed to which this item is passed as a parameter

e if defined, an on_after show_view_form event handler of an item is executed to which this
item is passed as a parameter

Below is the code of the view method for the client in python:

def view(self, widget):

self.view form = self.create view form(widget)

if self.task.on before show view form:
self.task.on_before show view form(self)

if self.owner.on_before_show view form:
self.owner.on before show view form(self)

if self.on before show view form:
self.on before show view form(self)

if self.view form and self.view form.window:
self.view form.window.connect("key-press-event", self.view keypressed)
self.view form.window.connect('delete-event', self.check view)

self.view form.show()

if self.task.on after show view form:
self.task.on after show view form(self)

if self.owner.on after show view form:
self.owner.on_after_show view form(self)

if self.on_after_show _view_form:
self.on after show view form(self)

if self.view form.window:
self.view form.window.connect("destroy", self.do on destroy view form)

return self.view form

4.4.3.2 Append_record, insert_record, edit_record methods.

In the on_before_show_view_form event handler of the Demo application insert_record and
edit_record methods are connected to the New and Edit buttons:

® Python: item.view_form.new_button.connect('clicked', item.insert_record)
* JavaScript: item.view_form.find("#new-btn").click(function() {item.insert_record();});

When append record, insert record or edit record method is executed, it first fires append, insert or
edit method, respectively, that puts item into insert or edit mode, after which the create_edit_form
method is executed, which creates an item edit form.

During a create_edit_form method execution

* client looks for an edit template, on which a edit_form object is created

e if for a task an on_before_show_edit_form event handler is defined, this handler is executed

to which this item is passed as a parameter

e if for an items's owner an on_before_show_edit_form event handler is defined, this handler
is executed to which this item is passed as a parameter

¢ if defined, an on_before_show_edit_form event handler of an item is executed to which this
item is passed as a parameter

* view form visually displayed on the screen

e if for a task an on_after show_edit_form event handler is defined, this handler is executed
to which this item is passed as a parameter

¢ if for an items's owner an on_after show_edit_form event handler is defined, this handler is
executed to which this item is passed as a parameter

¢ if defined, an on_after show_edit_form event handler of an item is executed to which this

item is passed as a parameter

4.4.3.3 Post _record u apply_record methods.

To save the results of the record editing use the apply_record method. If the record has been
modified the post method is executed after which it is stored on the server as a result of the apply
method, otherwise the cancel method is called. And at the end the edit form window closes.

The post_record method performs the same actions except for storing data on the server.

4.4.3.4 Delete record method.

When executing this method, if an item read_only property is not false, and after user confirms the
deletion, the delete method is executed, and then record is erased on the server by executing apply
method.

4.4.3.5 Create grid method.

Create grid method allows you to create a table view of item records:
* Python:

def create grid(self, container, fields=None, dblclick edit=True, headers=True, lines=False,
border width=6, striped=True, multi select=False,multi select get selected=None,
multi select set selected=None):

* JavaScript:

create grid: function(container, options) {
var default options = {
height: 480,
fields: [],
column_width: {3},
row _count: 0,
word _wrap: false,
title word wrap: false,
expand_selected row: 0,
multi select: false,
multi select title: '',
multi select colum width: undefined,
multi select get selected: undefined,
multi_select_set selected: undefined,
multi select select all: undefined,

tabindex: 0,
striped: true,
dblclick edit: true,
on_dblclick: undefined,
on_pagecount update: undefined,
editable: false,
always show editor: false,
editable fields: undefined,
selected field: undefined,
append on lastrow keydown: false,
sortable: false,
sort fields: undefined,
row callback: undefined,
title callback: undefined,
show footer: undefined

}i

Below we describe the basic parameters for JavaScript grid:

container - a JQuery object that will contain (be parent of) a table,

fields - a list of field names, if specified, the grid will create a column for each field whose
name is in this list, if not specified (the default) then view fields, specified in the
Administrator (the «View» button), will be used,

striped — the grid is striped if this value is true,

dblclick_edit - if the value is true (the default), then double-click on a grid row activates
editing of the correspondent record,

on_dblclick - allows to specify the procedure that will be executed when user double-clicks
the grid row,

multi_select - if this parameter is set to true, a new leftmost column with check-boxes will
be created to select records. So, if the function-parameter 'multi_select_get_selected' returns
true for the record this record's check-box will be checked. When you click on the
check-box the multi_select_set_selected function will be called with the state of the
check-box as a parameter. If the function-parameter multi_select_select_all is specified than
check-box will be created in the leftmost column of the grid title and this function will be
called when user clicks on this check-box. In the example below for the tracks item the
multi_select parameter is set to true, the dictionary selected_records is created, that will
store information about the selected records, and that the function-parameters
multi_select_get_selected and multi_select_set_selected will use:

function on before show view form(item) {
var multi select,
multi select get selected,
multi select set selected;

item.auto loading = true;
if (item.item name === "tracks") {
item.selected records = {};
multi select = true;
multi select get selected = function() {
return item.selected records[item.id.value]
}

multi_select_set selected = function(value) {
if (value) {
item.selected records[item.id.value] = 1;
}

else {
delete item.selected records[item.id.value];
}

}
}

item.view grid = item.create grid(item.view form.find(".view-table"),

{
multi select: multi select,
multi select get selected: multi select get selected,
multi select set selected: multi select set selected,

1)
}

editable - if this parameter is set to true, user can edit fields in the grid. If an editable_fields
parameter is not specified (default), then it is possible to edit any field in the grid, otherwise
only fields which names are listed in this parameter. When always_show_editor is true, then
the editor is always present, otherwise (the default) to get the grid into the edit mode it is
necessary to press the Enter key or if keypress_edit is true (the default), press any key. Use
selected_field parameter to specify a field that will be selected when create is created. To
save new values press Enter or move to another record. The new values is stored locally to
save then in the server database, you should call the apply method.

sortable - if this parameter is specified, it is possible to sort the item records by clicking on

the grid column header, when a sort_fields parameter is not specified (default), user can sort
records on any field, otherwise, only on the fields whose names are listed in this parameter.
Sorting is performed on the server.

auto_fit_width - if this parameter is true, the grid tries to display all the columns without the
use of a horizontal scroll bar, including when resizing columns.

expand_selected_row - when the word_wrap parameter is set to true and
expand_selected_row value greater than 0, then if the text of selected record field values
does not fit in a grid columns, the selected row height is increased. Expand_selected_row
value specifies the minimum height (number of lines) of the selected row.

Note that the behavior of the grid is determined by the 'auto_loading' attribute of the item. For the
grid in python if this attribute value is set to true, the grid, when necessary, automatically loads
records from the server in accordance with the value of the 'limit' attribute. The JavaScript grid,
when auto_loading is true, creates a paginator and based on the specified parameters calculates the
value of the limit attribute of the item. If auto_loading value is false, the grid displays all available
records of the item.

This method returns a DBGrid object.

4.4.3.6 Create entries method.

Create_entries method allows you to create visual controls for editing item fields:

Python:
def create entries(self, container, fields=None, col count=1):
JavaScript:

create entries: function(container, options) {
var default options = {
fields: [1],
col count: 1,
tabindex: undefined
}i

The following parameters are passed to the method:

container - an object that will contain (be parent of) a visual controls, for web client it's
JQuery object, for pygtk —a GTK widget,

fields - a list of field names, if specified, a visual control will be create for each field whose
name is in this list, if not specified (the default) then edit fields specified in the
Administrator will be used (Edit button),

col_count - the number of columns that will be created for visual controls, the default is 1.
(In Demo application, in the invoice edit form, the col_count equals 2),

tabindex - if tabindex is specified, it will the tabindex of the first visual control, tabindex of

all subsequent controls will be increased by 1.

4.4.3.7 Interaction between data and visual controls.

By default, any data changes of an item are immediately displayed in visual controls of the client -

tables, input, grids, entries and so on. But sometimes it is necessary to disable this connection. You

can disable and enable these interactions by using the disable_controls and enable_controls methods
respectively. To update visual controls use the update_controls method (in this case grids will be
recreated). To learn about the state of visual controls use the controls_enabled and controls_disabled
methods.

For Example:
subtotal = 0
tax = 0
total = 0
item.invoice table.disable controls()
rec = item.invoice table.rec no
try:
for detail in item.invoice table:
detail.edit()
calc_total(detail)
detail.post()
subtotal += detail.amount.value
tax += detail.tax.value
total += detail.total.value
finally:
item.invoice_table.rec_no = rec
item.invoice table.enable controls()
item.invoice table.update controls()
item.subtotal.value = subtotal
item.tax.value = tax

item.total.value = total

In the above code we save the current record number of the invoice table detail item and disable its
visual controls. Then we loop through all the records, recalculate their fields values and calculate
total values of the invoice. After the loop we return the cursor to its original position, connect and
update its visual controls.

4.4.3.8 Web client debugging.

After saving changes to the web client module, a framework, based on all web modules of the task,
generates events.js file and saves it to the js folder of the project directory. This file contains,
appropriately structured, all the events of the project.

L 4 & [localhost Ty =

Demo

Journals Reports Catalogs About

Customers Tracks Albums Artists

Customers Search
FirstName LastName Company Address Country Phone Email

Roberto Almeida Riotur Praga Pio X, 119 Brazil +55 (21) 2271-7000 roberto. almeida@riotur.gov.br

Julia Barnett 302S700E usa +1 (B01) 531-7272 jubameti@gmail.com

Camille Bernard 4, Rue Milton France +33 01 49 70 65 65 camille bernard@yahoo.ir

Michelle Brooks 627 Broadway usa +1(212) 221-3546 michelleb @acl.com

Robert Brown 796 Dundas Street West Canada +1 (416) 363-8888 robbrown@shaw.ca

Kathy Chase 801 W 4th Street usa +1 (775) 223-7665 kachase@hotmail.com

Richard Cunningham 2211 W Bermry Street usa +1 (B17) 924-7272 ricunningham@hotmail.com

Marc Dubois 11, Place Bellecour France +33 04 78 30 30 30 marc.dubois@hotmail.com

Joao Fernandes Rua da Assuncao 53 Portugal +351(213) 466-111 jfernandes@yahoo.pt

Edward Francis 230 Elgin Street Canada +1 (613) 234-3322 edfrancis@yachoo.ca

“ < Page 1 of6 ¥ »

i Delete & Reports « & Edit + New
@, Elements Metwork | Sources| Timeline Profiles Resources Audits Console = & |EI‘ x
Sources | Contentscripts Snippets |[4] (index) jam.js events,js x [n o ot e O
¥ () localhost 1| (function(window. undefined) { Pause On Caught Exceptions
2|"use strict”; =
»Oess 3 v:res :r:l;ndow.s,; ¥ Watch Expressions + c
v(js 4 this.it item name: <r
| bootstrap-datepicker.js u function TaskEvents() {}. w Call stack Async
| bootstrap-modaljs 7 window.task_events = new TaskEvents(); ¥ Scope Variables
. f] =
| bootstrap-modalmanager js 9| function Events5() { // demo ¥ Breakpoints
| bootstrap.js 18 No Breakpoints
i 11
L Beventsis [R » DOM Breakpoints
2| jamjs 13 var content; » XHR Breakpoints o
- 14 if (item.item type === "report"
! jquery- .Z‘T.I.JS 15 item.prinE_{Zpurtl’] ; P M » Event Listener Breakpoints
=l mds-min.js 16 1 - | » Workers
=/ (index] 17 =lee
- (index) 18 e
< dummy.html {} Line 1, Column 1

Above is Demo project in the browser Chrome.

4.5 Sever side programming.

4.5.1 SQL queries.

When task is created on the server, it creates a pool of connections to the database using the
multiprocessing module. This pool is accessed via a request queue. To run the sql query via a
connection pool the task has the following methods:

e execute
e execute_select

To execute select queries use the execute_select method of the task:
def execute select(self, sql):
where sql is SQL query. The method returns a list of records. For example:
sql = """

SELECT C.firstname || " " || C.lastname as name, count(*), SUM(I.total)

FROM %s AS I JOIN %s AS C ON I.customer = C.id

WHERE I.invoicedate >= "%s" AND I.invoicedate <= "%s"
GROUP BY I.customer

ORDER BY name

rows = report.task.execute select(sql % (report.task.invoices.table name,
report.task.customers.table name, report.invoicedatel.value.strftime('S%Y-%m-%d"'),

report.invoicedate2.value.strftime('%Y-%m-%d')))
Here, the query is executed in the report event.
For other queries use execute method:

def execute(self, sql, params=None):

his method returns a tuple - (result, error). If successful, the error is None, otherwise it contains
error message, the result is result of the query execution. Sql parameter can be either the query and
a list of requests. If a sql parameter is a query than a params can the contain the parameters of the
query. The query is executed in a single transaction, and then the transaction is committed.

4.5.2 Server events.

To initialize the task use on_created event handler. It is fired when the task is just created.

For example:

def on_created(task):

task.version = '1.0'
For all item on the server working with the data, you can define the following event handlers:

e on_select
e on_record_count
* on_apply

On_apply event can be used if you want to override the data saving procedure on the server during
the execution of the method apply. This event has the following form:

def on_apply(item, delta, params, privileges, user _info, enviroment):

pass

and has the following parameters
e jtem - areference to the item,
* delta - a delta containing item changes (discussed in more detail below),
* params - the parameters passed to the server by apply method,

» privileges - a dictionary containing information about the user's permissions ('can_create’,
'can_edit', 'can_delete', 'can_view'),

* user_info - a dictionary containing information about the user,

* enviroment - a dictionary containing standard WSGI environment variables.

The delta parameter contains changes that must be saved on the server. By itself, this option is an
item's copy, and its set of records is the item's change log. The nature of the record change can be
obtained by using methods rec_inserted, rec_modified or rec_deleted, each of which returns a value
of True, if the record is added, modified or deleted, respectively. If the item has a detail item, delta
also has a corresponding detail item storing detail changes. Details_active attribute of delta is True.
Please note that if a record is deleted from an item and this record has detail records, the delta will
just keep this deleted record, information about the deleted records of the detail is not saved. In this
case if you need this detail records you must get them yourself (see example below).

When the data of the 'apply' method are send to the server, server creates an item's delta. Then
based on changes stored in the delta the sql request is generated and is passed as a parameter to the
'execute' method of the task: delta = self.delta(changes)

sql = delta.apply sql(privileges)

self.task.execute(sql)

As aresult, changes are stored in the database in a single transaction. Upon successful completion
of this transaction, the 'apply' method on the client updates the change log, and when new records
were added, id values of these records are updated.

The example below is taken from the server module of the Invoices journal. There, in the same
transaction in which the invoice data are saved, the number of sold tracks is recalculated;

def process delta(delta):

def get_sold(invoice_table):

result = {}

track ids = []

for i in invoice table:
track ids.append(i.track.value)

if track ids:
tracks = delta.task.tracks.copy()
tracks.set where(id in=track ids)
tracks.open(expanded=False, fields=['id', 'quantity'])
for t in tracks:

result[t.id.value] = t.quantity.value

return result

result = []
invoice table = delta.task.invoice table.copy()
for d in delta:
if d.rec deleted():
invoice table.set where(owner id=d.ID, owner rec id=d.id.value)

invoice table.open(expanded=False, fields=['track',6 'quantity'l])

sold = get sold(invoice table)
for i in invoice table:
sold[i.track.value] -= i.quantity.value
else:
sold = get_sold(d.invoice_table)
for t in d.invoice table:
if t.rec_modified():
invoice table.set where(id=t.id.value)
invoice table.open(expanded=False, fields=['track', 'quantity'l])
sold[t.track.value] -= invoice table.quantity.value
if t.rec_inserted() or t.rec modified():
sold[t.track.value] += t.quantity.value
elif t.rec deleted():
sold[t.track.value] -= t.quantity.value
for track, quantity in sold.iteritems():

result.append("UPDATE %s SET QUANTITY=%s WHERE ID=%s" % (d.task.tracks.table name, quantity,
track))

return result

def on_apply(item, delta, params, privileges, user_info, enviroment):
tracks sql = process delta(delta)
sql = delta.apply sql()

return item.task.execute([sql] + tracks sql)

Above in the on_apply event handler the process_delta procedure returns a list of sql queries, that
change the number of tracks sold. Then, these queries are executed together with the queries that
change the invoice data.

To override the way the open method is executed on the server, you can use the on_select event:
def on_select(item, params, user info, enviroment):
error_mes = ''
rows = []
sql = item.get select statement(params)
try:
rows = item.task.execute select(sql)
except Exception, e:
error_mes = str(e)

return rows, error_mes
The following parameters are passed to the event handler:
¢ jtem - a reference to the item,
* params - the parameters passed by item's open method to the server,
* user_info - a dictionary containing information about the user,

* enviroment - a dictionary containing standard WSGI environment variables.

In the example above, the standard procedures are performed of the 'open' method when it is
executed on the server. The 'get_select_statement' method generates an sql query that is executed
by the task.

The event should return tuple of a list of records and an error message. In each record, fields values
must follow in the same order in which fields were listed in the open function. If the expanded
parameter is True, these values must be followed by lookup values of the lookup fields.

Similarly, you can use then on_record_count event handler to override the calculation of the total
number of records of the item which is used by the grid component to create pagination:

def on record count(item, params, user info, enviroment):

error_mes =
result = 0
sql = item.get record count query(params)
try:
rows = item.task.execute select(sql)
result = rows[0][0]
except Exception, e:
error_mes = str(e)

return result, error_mes

4.5.3 Server functions.
If a function is defined in item's server module that starts with a server_ string:

def server function name(item, paraml, param2, ..):

pass
then on client in Python, this function can be called as follows:
result = item.server function name(paraml, param2, ..)

on client in JavaScript the synchronous function call:
result = item.server function('server function name', [paraml, param2, ..])

asynchronous function call (callback is some function):

item.server function('server function name', [paraml, param2, ..], callback(result) {

1)
For example, if we define in the item server module the following function:

def server get sum(item, valuel, value2):

return valuel + value2
we can call this function on client in Python the following way:
result = item.server get sum(1l, 2)

on client in JavaScript synchronous call will be:

result = item.server function('server get sum', [1, 2])

If the server function ends with _env, then it is passed an additional argument - a dictionary
containing the WSGI standard environment variables values. For instance on the server:

def server get sum env(item, valuel, value2, env):
on client:

result = item.server get sum(1l, 2)

4.6 Report programming.
To print a report on a client use the print_report method. As a result of calling this function, a client
creates a form for editing the report parameters. When creating this form the
on_before_show_params_form events are generated sequentially for task, reports item, and the
report itself. In Demo application in the on_before_show_params_form of the task the click on the
Print button is connected to the process_report method, which sends request to the server to
generate the report. But before doing it an on_before_print_report event is, fired first for the report
owner and then for report itself.

The server first of all creates a copy of the report and then this copy fires an on_generate_report
event. For example for the Invoice report of the Demo application this event is as follows:
def on generate report(report):

invoices = report.task.invoices.copy()

invoices.set_where(id=report.id.value)

invoices.open()

customer = invoices.firstname.display text + + invoices.customer.display text

address = invoices.billing address.display text

city = invoices.billing city.display text + ' ' + invoices.billing state.display text + ' ' + \
invoices.billing country.display text
date = invoices.invoicedate.display text
shipped = invoices.billing address.display text + ' ' + \
invoices.billing city.display text + ' ' + \

invoices.billing state.display text + + invoices.billing country.display text
taxrate = invoices.taxrate.display text

report.print band('title', locals())

tracks = invoices.invoice table

tracks.open()

for t in tracks:
quantity = t.quantity.display text
track = t.track.display text
unitprice = t.unitprice.display text
sum = t.amount.display text

report.print band('detail', locals())

subtotal = invoices.subtotal.display text
tax = invoices.tax.display text
total = invoices.total.display text

report.print band('summary', locals())
First we create a copy of the invoices journal.
invoices = report.task.invoices.copy()

We create copies because multiple users can simultaneously generate the same report in parallel
threads.

Then we call the set_where method of the copy:
invoices.set where(id=report.id.value)

where report.id.value is report id parameter, the value of which we set in the on_before_print_report
event handler on the client and which is equal to the current invoice id field value.

Then, using the open method, we obtain the record on the server. After that the title band is printed:
report.print_band('title', locals())

But before that we assign values to four local variables: customer, address, city and date that
correspond to programmable cells in the title band in the report template.

Then the same way we generate detail and summary bands.

Once the report is generated it is stored in a report folder of the static directory and the server sends
the client the report file url.

The report can be converted to another format other than ods. The format can be set on the client
using the extension attribute of the report. The conversion is carried out by open office package.
Open office can be run in the server mode:

soffice --headless --accept="socket,host=127.0.0.1,port=2002;urp;"

5 Jam.py utils.

If you select the Project node in the project tree of Administrator the buttons will be available to
export and import the metadata of the project and to print its code:

") Administrator - Demo

¥ Project Project parameters
Users Project locale
Roles
¥ Task Export
s Import
Catalegs
® Journals P
Tables

Reports

5.1 Exporting and importing project metadata.
Export and import utilities allow developer to save the project metadata in a file. When exporting in
the file are saved:
* project parameters
* project locale

* roles and their privileges

* task tree: items, their fields and filters, including reports and their parameters, the program
code of all items

When importing project the framework compares the current project metadata with metadata stored
in the file. Based on this analysis it finds the differences in the structures of database and generate
sql queries. Thereafter, an attempt is made to execute these queries in one transaction. In case of
success, the metadata that are stored in admin.sqlite database are updated in one transaction. If the
import is done remotely, then upon successful completion of the import the server is stopped. It
must be started again.

If database changes have been made outside Administrator (manually), directly in the database, they
are not included in the export file.

An import is not possible for projects with a SQLITE database.

Be very careful when importing a project. Make backup copies of the project database and the file
admin.sqlite.

5.2 Printing of programming code.

The programming code of the project is stored in a set of different modules. This can be
inconvenient if you need to get acquainted with all the code of the project. Press the Print button for
all the code of the project to be displayed in a single file:

code.txt (~/Work/work/static/reports) - gedit

n PDTK’prTb - B E

|] code.txt x
TASK: demo

EEA A AR A A A A A AT A A A A A A AR A A A AR A A A A I A A A A I A A A A I A A A A I A A A A I A A A A A A d A dhddddhddd o ddddd

CLIENT CODE
L L L L T T T

-*- coding: utf-8 -*-
import gtk
def on_before_show_main_form(task):

def view_item(widget, it):

if it.item_type == 'report':
it.print_report(widget)
else:

caption_box.get_children()[@].set_markup('<big>%s<fbig>"' % widget.get_label())
it.view(widget)
if task.key_press_id and task.main_form.window.handler_1is_connected(task.key press_id):
task.main_form.window.disconnect(task.key_press_id)
if it.view_keypressed:
task.key_press_id = task.main_form.window.connect("key-press-event"”, it.view_keypressed)

task.invoices.details_active = True
body = task.main_form.body

TekeT ~ LnpwrHa Tabynauyuu: 8 ~ Ctp1201,Ccn643 BCT

	1 Overview.
	2 Getting started
	2.1 Installation.
	2.2 Creating a new project.

	3 Building first jam.py application.
	3.1 Demo project.
	3.2 Administrator.
	3.3 Building first catalog.
	3.4 Complete catalogs building.
	3.5 Creating journals and tables.
	3.6 Creating filters.
	3.7 Creating indices.
	3.8 Building reports.
	3.9 Project parameters.
	3.10 Users and roles.

	4 Jam.py programming.
	4.1 Event Editor .
	4.2 Task tree.
	4.3 Data programming.
	4.3.1 Fields.
	4.3.2 Filters.
	4.3.3 Getting data records.
	4.3.4 Navigating through records.
	4.3.5 Changing the data.
	4.3.6 Working with details.

	4.4 Client-side programming.
	4.4.1 Main form.
	4.4.2 Forms.
	4.4.2.1 Client forms in python and pygtk.
	4.4.2.2 Client forms in web interface.

	4.4.3 Client Methods.
	4.4.3.1 View method.
	4.4.3.2 Append_record, insert_record, edit_record methods.
	4.4.3.3 Post_record и apply_record methods.
	4.4.3.4 Delete_record method.
	4.4.3.5 Create_grid method.
	4.4.3.6 Create_entries method.
	4.4.3.7 Interaction between data and visual controls.
	4.4.3.8 Web client debugging.

	4.5 Sever side programming.
	4.5.1 SQL queries.
	4.5.2 Server events.
	4.5.3 Server functions.

	4.6 Report programming.

	5 Jam.py utils.
	5.1 Exporting and importing project metadata.
	5.2 Printing of programming code.

